Laser iridotomy in dark irides
Don Julian de Silva, Gus Gazzard, Paul Foster

Aim: To present a modified laser iridotomy technique for use in dark irides.

Methods: The argon laser was applied in two stages: firstly, low-power argon was applied, which created a circular area of pitted iris stroma in the superior iris. High-power argon was then applied in the same area to form a punched-out crater at the level of the radial muscle fibres. The iridotomy was then completed with low-energy YAG laser.

Results: 15 eyes of 8 consecutive patients who underwent successful combined argon–YAG laser iridotomy using low levels of YAG energy in dark irides is presented. The combined technique avoids common issues associated with the use of pure YAG laser, including high energy levels and a high risk of iris haemorrhage.

Conclusions: Combined two-stage argon and YAG laser is an effective technique in the treatment of angle-closure glaucoma of dark irides of African and Asian patients. The technique is more effective and has reduced complications in comparison to pure argon or YAG laser techniques.

METHOD
Before laser treatment all patients underwent ophthalmic evaluation, and informed consent was obtained. All patients were diagnosed with primary angle closure with iridotrabecular contact (>90°). Pilocarpine drops (4%) were administered, followed by one drop of 0.5% apraclonidine at least 30 min before the procedure, with a second dose immediately before starting treatment.

A drop of 0.5% proxymetacaine was administered, followed by placement of an Abraham contact lens (Ocular Instruments, Bellvue, Washington, DC, USA). The superior iris was assessed, and where possible an iris crypt selected. The argon laser was applied in two stages. Firstly, a low power of 95–180 mW was applied for 0.05 s, 50 μm diameter of between 15 and 25 laser shots. This produced a circular area of pitted iris stroma of approximately 250 μm in diameter, resembling a rosette in appearance (fig 1). Secondly, a high power of 700 mW was applied for 0.1 s, 50 μm diameter of between 10 and 25 laser shots. This produced a punched-out crater to the iris stromal surface, which helps to avoid the creation of large gas bubbles, followed by a higher-power setting to produce a stromal crater.

The iridotomy was then completed through the thinned argon-treated iris with low-energy YAG laser.

Figure 1 Right: photograph of the superior pitted iris following after low-power argon laser treatment. Centre: punched-out crater appearance of the iris following after high-power argon laser treatment. Left: laser iridotomy of approximately 200 μm diameter following after YAG laser treatment.
Table 1
Characters of patients who received the combined argon–YAG (yttrium–aluminium–garnet) laser technique

<table>
<thead>
<tr>
<th>Patient number</th>
<th>Eye</th>
<th>Origin of patient</th>
<th>Age (years)</th>
<th>Diagnosis</th>
<th>Low-power argon laser</th>
<th>High-power argon laser</th>
<th>YAG laser</th>
<th>Total energy (J)</th>
<th>Complications</th>
<th>Post-laser iridotomy patency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LE</td>
<td>African</td>
<td>63</td>
<td>PAC</td>
<td>15 0.10 0.075</td>
<td>17 700 1.19</td>
<td>32 0.061 1.326</td>
<td>Minor iris haemorrhage</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RE</td>
<td>Indian</td>
<td>29</td>
<td>PAC</td>
<td>23 0.12 0.138</td>
<td>25 700 1.75</td>
<td>53 0.065 1.9527</td>
<td>Minor iris haemorrhage</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RE</td>
<td>Indian</td>
<td>64</td>
<td>PAC</td>
<td>19 0.15 0.143</td>
<td>11 700 0.77</td>
<td>22 0.036 0.9481</td>
<td>Minor iris haemorrhage</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>RE</td>
<td>Indian</td>
<td>50</td>
<td>PAC</td>
<td>19 0.13 0.124</td>
<td>11 700 0.77</td>
<td>15 0.015 0.9081</td>
<td>Minor iris haemorrhage</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>RE</td>
<td>Indian</td>
<td>65</td>
<td>PAC</td>
<td>20 0.095 0.095</td>
<td>20 700 1.40</td>
<td>24 0.031 1.526</td>
<td>Minor iris haemorrhage</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RE</td>
<td>Indian</td>
<td>60</td>
<td>PAC</td>
<td>20 0.10 0.100</td>
<td>13 700 0.91</td>
<td>4 0.004 1.0144</td>
<td>Minor iris haemorrhage</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>RE</td>
<td>Indian</td>
<td>48</td>
<td>PAC</td>
<td>15 0.10 0.075</td>
<td>11 700 0.77</td>
<td>39 0.063 0.9076</td>
<td>Minor iris haemorrhage</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>RE</td>
<td>Greek</td>
<td>55</td>
<td>PAC</td>
<td>21 0.12 0.126</td>
<td>18 700 1.26</td>
<td>9 0.009 1.3946</td>
<td>Minor iris haemorrhage</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>LE</td>
<td>African</td>
<td>63</td>
<td>PAC</td>
<td>20 0.095 0.095</td>
<td>20 700 1.40</td>
<td>24 0.031 1.526</td>
<td>Minor iris haemorrhage</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>RE</td>
<td>Indian</td>
<td>60</td>
<td>PAC</td>
<td>20 0.10 0.100</td>
<td>13 700 0.91</td>
<td>4 0.004 1.0144</td>
<td>Minor iris haemorrhage</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>RE</td>
<td>Indian</td>
<td>48</td>
<td>PAC</td>
<td>15 0.10 0.075</td>
<td>11 700 0.77</td>
<td>39 0.063 0.9076</td>
<td>Minor iris haemorrhage</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>RE</td>
<td>Greek</td>
<td>55</td>
<td>PAC</td>
<td>21 0.12 0.126</td>
<td>18 700 1.26</td>
<td>9 0.009 1.3946</td>
<td>Minor iris haemorrhage</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

Range

<table>
<thead>
<tr>
<th>Low-power argon laser</th>
<th>High-power argon laser</th>
<th>YAG laser</th>
<th>Total energy (J)</th>
<th>Complications</th>
<th>Post-laser iridotomy patency</th>
</tr>
</thead>
<tbody>
<tr>
<td>15–23</td>
<td>11–25</td>
<td>24 (18)</td>
<td>0.033 (0.03)</td>
<td>1.234 (0.29)</td>
<td></td>
</tr>
</tbody>
</table>

Mean (SD)

<table>
<thead>
<tr>
<th>Low-power argon laser</th>
<th>High-power argon laser</th>
<th>YAG laser</th>
<th>Total energy (J)</th>
<th>Complications</th>
<th>Post-laser iridotomy patency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.095 (0.03)</td>
<td>0.114 (0.04)</td>
<td>0.087 (0.30)</td>
<td>0.033 (0.03)</td>
<td>1.234 (0.29)</td>
<td></td>
</tr>
</tbody>
</table>

LE, left eye; PAC, primary-angle closure defined by iridotrabecular contact (≥90°); RE, right eye; YAG, yttrium-aluminium-garnet.
level of the radial muscle fibres and vasculature (fig 1). The iridotomy was completed with YAG laser, 1–3 mJ shots, using between 4 and 55 laser shots. The objective of the YAG treatment is to achieve a full thickness iridotomy, and circumferentially enlarge the hole, aiming for a 200 μm diameter. Patients were assessed 1 h after treatment and the intraocular pressures measured. After laser treatment, all patients were treated with 1% prednisolone acetate hourly for 24 h and then four times a day until reviewed in clinic 1 week later.

RESULTS
We present 15 eyes of 8 patients with dark irides who underwent the combined argon–YAG laser technique (table 1). In all cases, a patent laser iridotomy was created after a single procedure using low-energy YAG laser energy (mean (SD) 33 (25) mJ). Minor iris haemorrhage was identified in three eyes and was stopped by light pressure with the Abraham contact lens. At 1 week after laser treatment, no inflammation was clinically observed, and a satisfactory iridotomy 3 diameter of 200 μm was achieved in all cases with a single treatment.

DISCUSSION
During the 1970s, the argon laser was the first laser to be used for performing a non-invasive iridotomy. The argon laser photocoagulates tissues, absorption by iris pigment results in heating, the coagulation of blood and collagen, with shrinking and charring of tissue. Although the laser was well absorbed by iris pigment, argon laser iridotomy alone was often associated with a high failure rate (20% in brown eyes1), and a high subsequent closure rate of up to 30%.2 In addition, the use of full-thickness argon laser iridotomy was associated with a 10% risk of endothelial cell loss,3 and retinal burns were reported.4

During the 1980s, the YAG laser was introduced. The YAG laser photodisrupted tissues, focal nanosecond pulses stripped electrons from atoms within the iris, and generated a plasma that rapidly expanded and collapsed, which created a shock wave at the site of focus.5 6 The technique was highly effective in light-coloured irides,7 required considerably less total energy than pure argon laser iridotomy and achieved a higher rate of single treatment success and lower risk of subsequent closure. However, YAG laser iridotomy had drawbacks in highly pigmented irides; high levels of laser energy were required and up to 40% of cases were complicated with iris haemorrhage.7 12–14 The haemorrhage may be severe and warrant postponing the procedure or repeating the treatment at an alternative site.7 Focal corneal opacity above the YAG iridotomy site was identified in up to 35% cases15 with a reduction in endothelial cell count,16 dependent on two factors: the distance between the endothelium and iris surface, and the total YAG energy used.17 18 In patients with angle-closure glaucoma, there is <1 mm between the mid-peripheral iris and the posterior cornea.19 20 Although a more mid-peripheral iridotomy is beneficial to the endothelium, there is an increased risk of postoperative glare and diplopia.20 A lower energy requirement to complete a YAG iridotomy would be favourable to avoid detrimental effects on the endothelium.

Sequential argon–YAG laser was proposed for use in the dark irides of Chinese patients.3 The argon laser energy is well absorbed by the heavy iris pigment3 and creates a flattened partial thickness thinning of black pigment crust, with low risk of a retinal burn. Subsequent YAG laser in the area of iris thinning is efficient, using only a third of the corresponding power reported for pure YAG laser iridotomy.3 Pure YAG laser iridotomy often requires high levels of energy to achieve a patent iridotomy in dark irides, and evidence suggests that this may have a detrimental effect on the endothelial cell count.10 16

Although the clinical relevance of this reduction is not known, patients with pre-existing corneal disorders may be placed at risk of endothelial decompensation with high energy YAG laser, and we propose the standard use of argon pre-treatment in these patients. The use of the two-step low-power and high-power argon technique resulted in >50% reduction in total laser energy compared with the previous single-setting combined argon–YAG technique (mean laser energy reduced from 3.669 J to 1.234 J). In addition, the morphology of the iridotomy is often large and round, in contrast with the slit opening of YAG iridotomy. Although the combined argon–YAG laser iridotomy required the use of two lasers, the technique is effective with a single sitting.

The combined argon–YAG iridotomy described previously is an effective technique; however, we found some limitation with the use of high-power argon laser settings in highly pigmented irides, which often resulted in the generation of large, adherent vapour bubbles at the iris surface. These bubbles are of sufficient size to obscure the underlying iris; although tapping the Abraham lens may dislodge them, this may considerably prolong the procedure. An obscured view of the iris may be potentially hazardous, as pure argon laser iridotomy has been associated with focal lens damage in up to 50% of cases, more rarely retinal burns,21 22 and may damage the corneal endothelium leading to corneal decompensation.23–25 We found that by modifying the argon laser treatment to a two-stage process, low power followed by high power, large vapour bubbles can be avoided. Small vapour bubbles may be formed; however, shooting the laser at the edge of these small vapour bubbles released them from the iris surface.

Iris haemorrhage is a common complication of pure YAG laser iridotomy, occurring in up to 40% of procedures.7 12 13 We found iris haemorrhage to be an uncommon complication of combined argon–YAG laser. Minor iris haemorrhage could be stemmed by gentle digital pressure on the Abraham contact lens; no procedure required postponing or treatment at an alternative site.

Combined argon–YAG laser is an effective technique in the dark irides of African and Asian patients. The combined laser offers advantages over conventional pure YAG or argon laser treatments, including a marked reduction in total YAG energy, reduced risk of iris haemorrhage and high patency after primary treatment.

Summary
We present a modified laser technique for the treatment of primary angle-closure and angle-closure glaucoma in the dark irides of African and Asian patients. We found the combined argon–YAG (yttrium–aluminium–garnet) laser iridotomy technique to have advantages over conventional pure YAG and argon laser.
Laser iridotomy in dark irides